metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Carbonato- $\kappa^2 O, O'$)bis(5,5'-dimethyl-2,2'-bipyridyl- $\kappa^2 N, N'$)cobalt(III) bromide trihydrate

Kannan Arun Kumar, Parthsarathi Meera, Madhavan Amutha Selvi and Arunachalam Dayalan*

Department of Chemistry, Loyola College (Autonomous), Chennai 600 034, India Correspondence e-mail: dayalan77@gmail.com

Received 4 February 2012; accepted 29 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; Hatom completeness 81%; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.145; data-to-parameter ratio = 14.5.

In the title complex, $[Co(CO_3)(C_{12}H_{12}N_2)_2]Br\cdot 3H_2O$, the Co^{III} cation has a distorted octahedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water molecules are disordered and their H atoms were not located, there are typical $O \cdots O$ distances between 2.8 and 3.0 Å, indicating $O - H \cdots O$ hydrogen bonding. The crystal packing is consolidated by $C - H \cdots O$ and $C - H \cdots Br$ hydrogen bonds, as well as $\pi - \pi$ stacking interactions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å.

Related literature

For background to this class of compounds, see: Momeni *et al.* (2009); Harding *et al.* (2008); Kusrini *et al.* (2008). For applications of this class of compounds in various fields, see: Carol *et al.* (2006); Eddie *et al.* (2010); Raj *et al.* (2008); Vitushkina *et al.* (2006); Hyung *et al.* (2006); Jayaweera *et al.* (2002), Shi *et al.* (2010); For similar structures, see: Ma *et al.* (2008); Phatchimkun & Chaichit (2011).

Experimental

Crystal data $[Co(CO_3)(C_{12}H_{12}N_2)_2]Br\cdot 3H_2O$ $M_r = 621.32$ Monoclinic, $P2_1/c$ a = 11.5802 (15) Å b = 15.958 (2) Å

$\beta = 100.143 (3)^{\circ}$ Data collection

c = 14.3921 (17) Å

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.555, T_{max} = 0.664$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.145$ S = 1.025033 reflections

z = 4
Io Kα radiation
$u = 2.23 \text{ mm}^{-1}$
⁻ = 293 K
$.30 \times 0.25 \times 0.20$ mm

V = 2618.0 (6) Å³

N

23769 measured reflections 5033 independent reflections 3111 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$

346 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.77\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-1.43\ e\ \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond	geometry	(A,	°)	•
---------------	----------	-----	----	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C1-H1···O1	0.93	2.43	2.931 (5)	114
$C3-H3\cdots Br1^{i}$	0.93	2.80	3.718 (4)	168
C4−H4···O1 ⁱⁱ	0.93	2.51	3.257 (4)	138
$C11 - H11A \cdots Br1^{iii}$	0.96	2.91	3.810 (4)	157
C19−H19···O3 ^{iv}	0.93	2.52	3.284 (4)	140
$C20-H20\cdots Br1^{iv}$	0.93	2.85	3.778 (4)	172
C22-H22···O3	0.93	2.44	2.939 (4)	113
$C23-H23B\cdots O4^{v}$	0.96	2.42	3.330 (6)	158
$C24 - H24A \cdots Br1$	0.96	2.93	3.836 (5)	158

Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are thankful to Rev. Dr C. Joe Arun, SJ, Secretary, and Rev. Dr B. Jeyaraj, SJ, Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2590).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carol, D., Barry, C., Malachy, M. C., Michael, D. & Denise, A. E. (2006). Chem. Biol. Int. 164, 115–125.
- Eddie, L. C., Christa, S. & Andrew, D. K. (2010). J. Chem. Pharm. Res. 3, 1711– 1728.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.

- Hyung, J. K., Yong, C. J., Jong, I. R. & Taek, H. K. (2006). Bull. Kor. Chem. 27, 2084–2086.
- Jayaweera, P. M, Palayangoda, S. S., Tennakone. & Gamage, R. G. C. R. (2002). *Curr. Sci.* 83, 1368–1371.
- Kusrini, E., Saleh, M. I., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1014– m1015.
- Ma, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Momeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.
- Phatchimkun, J. & Chaichit, N. (2011). Acta Cryst. E67, m516-m517.
- Raj, P. S., Ajnesh, S., Paula, B., Vitor, F. & Paloth, V. (2008). J. Mol. Struct. 888, 291–299.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). *Chem. Res. Toxicol.* 23, 1417–1426.
- Vitushkina, S. V., Starodub, V. A. & Pyshkin, O. S. (2006). Russ. J. Coord. Chem. 32-34, 237-241.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m383-m384 [doi:10.1107/S160053681200894X]

(Carbonato- $\kappa^2 O, O'$)bis(5,5'-dimethyl-2,2'-bipyridyl- $\kappa^2 N, N'$)cobalt(III) bromide trihydrate

Kannan Arun Kumar, Parthsarathi Meera, Madhavan Amutha Selvi and Arunachalam Dayalan

Comment

2,2'-Bipyridyl and 1,10-phenanthroline are versatile ligands capable of forming stable complexes with different metals in their various oxidation states (Momeni *et al.*, 2009; Harding *et al.*, 2008; Kusrini *et al.*, 2008; Phatchimkun & Chaichit, 2011; Ma *et al.*, 2008). These complexes have interesting electrical, magnetic, thermal, optical and antimicrobial properties. Hence, they are widely studied in various fields like medicine (Carol *et al.*, 2006; Eddie *et al.*, 2010), crystallography (Raj *et al.*, 2008; Vitushkina *et al.*, 2006;) chemistry (Hyung *et al.*, 2006; Jayaweera *et al.*, 2002) or biology (Shi *et al.*, 2010). The crystal structures of a large number of metal complexes with the above mentioned ligands have been reported, including substituted ligands with various moieties like halogens, methyl, phenyl, acetyl at various positions.

The title complex $[Co(C_{12}H_{12}N_2)_2CO_3]Br 3H_2O$, consists of a complex cation $[Co(C_{12}H_{12}N_2)_2CO_3]^+$, a bromide counter anion and three molecules of lattice water. The cobalt(III) ion is six coordinated by four nitrogen atoms of the two 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands and two oxygen atoms of the carbonato ligands in a distorted octahedral environment (Fig. 1). The water molecules are disordered in the crystal packing, but O…O distances indicate O—H…O hydrogen bonding. The dihedral angle between the two dmbpy ligands is 85.8 (2)°. The major distortion from the ideal geometry is due to a narrow bite angle of the carbonato ligand, *i.e.* O1–Co—O3 = 69.44 (11)°. The bromide ion and solvated water molecules are dispersed between cationic layers. The crystal packing is stabilized by extensive series of C —H…O and C—H…Br hydrogen bonds (Fig.2, Table.1) In addition, π — π stacking interactions between adjacent pyridine rings are present with centroid to centroid distances of 3.694 (3) A° and 3.7053 (3) A°.

Experimental

The title complex was prepared by mixing 0.005 mol of finely crushed cobalt(II) bromide, exposed to microwave radiation and dissolved in 75 ml of acetone, with 0.005 mol of sodium carbonate, 0.01 mol of dmbpy and 2 ml hydrogen peroxide (30% v/v). The reaction mixture was stirred and allowed to react for one hour. The resultant pink coloured precipitate was filtered, washed with excess acetone and dried over vacuum desicator (yield: 60%). Dark red coloured single crystals were grown from a 90% v/v ethanolic solution by slow evoparation.

Refinement

The highest difference electron density is 0.77 e/Å^3 and is located at a distance of 0.902 Å away from bromine atom. The deepest hole is -1.43 e/Å ³ and is located at a distance of 0.83 Å a away from bromine atom. The solvent water molecules are disordered over various sites. Their occupancy was constrained for unity. Hydrogen atoms of the water molecules could not be reliably located in difference Fourier maps and hence were excluded from the refinement.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Ellipsoid plot (50% probability) of the cationic complex and the bromide anion. Disordered water molecules were omitted for clarity.

Figure 2

Crystal packing of the complex, showing also the hydrogen bonding interactions (dotted lines)

(Carbonato- $\kappa^2 O, O'$)bis(5,5'-dimethyl-2,2'-bipyridyl- $\kappa^2 N, N'$)cobalt(III) bromide trihydrate

Crystal data	
$[Co(CO_3)(C_{12}H_{12}N_2)_2]Br \cdot 3H_2O$ $M_r = 621.32$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.5802 (15) Å b = 15.958 (2) Å c = 14.3921 (17) Å $\beta = 100.143 (3)^{\circ}$ $V = 2618.0 (6) \text{ Å}^3$ Z = 4	F(000) = 1248 $D_x = 1.561 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4593 reflections $\theta = 2.2-25.6^{\circ}$ $\mu = 2.23 \text{ mm}^{-1}$ T = 293 K Block, red $0.30 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.555$, $T_{\max} = 0.664$	23769 measured reflections 5033 independent reflections 3111 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 25.9^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -19 \rightarrow 19$ $l = -17 \rightarrow 17$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.145$ S = 1.02 5033 reflections 346 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0686P)^2 + 2.4848P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.77$ e Å ⁻³ $\Delta\rho_{min} = -1.43$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.3712 (3)	0.2890 (2)	0.7720 (3)	0.0345 (8)	
H1	0.3549	0.3252	0.8186	0.041*	
C2	0.2916 (3)	0.2835 (2)	0.6885 (3)	0.0360 (9)	
C3	0.3182 (4)	0.2288 (2)	0.6203 (3)	0.0402 (10)	
Н3	0.2675	0.2237	0.5627	0.048*	
C4	0.4194 (3)	0.1824 (2)	0.6379 (2)	0.0374 (9)	
H4	0.4366	0.1450	0.5926	0.045*	
C5	0.4953 (3)	0.1909 (2)	0.7222 (2)	0.0301 (8)	
C6	0.6068 (3)	0.1471 (2)	0.7492 (2)	0.0300 (8)	
C7	0.6501 (3)	0.0889 (2)	0.6939 (3)	0.0389 (9)	
H7	0.6063	0.0731	0.6360	0.047*	
C8	0.7597 (3)	0.0539(2)	0.7250 (3)	0.0406 (9)	
H8	0.7893	0.0140	0.6884	0.049*	
C9	0.8246 (3)	0.0785 (2)	0.8104 (3)	0.0372 (9)	
C10	0.7749 (3)	0.1367 (2)	0.8627 (2)	0.0342 (8)	
H10	0.8176	0.1539	0.9203	0.041*	
C11	0.1830 (3)	0.3362 (3)	0.6723 (3)	0.0497 (11)	
H11A	0.1417	0.3292	0.7241	0.074*	
H11B	0.1334	0.3193	0.6148	0.074*	
H11C	0.2041	0.3940	0.6678	0.074*	
C12	0.9454 (4)	0.0463 (3)	0.8466 (3)	0.0533 (11)	
H12A	1.0005	0.0917	0.8510	0.080*	
H12B	0.9654	0.0045	0.8041	0.080*	
H12C	0.9478	0.0219	0.9079	0.080*	
C13	0.4108 (3)	0.1317 (2)	0.9421 (2)	0.0337 (8)	
H13	0.3688	0.1440	0.8825	0.040*	
C14	0.3629 (3)	0.0754 (2)	0.9986 (3)	0.0344 (8)	
C15	0.4271 (3)	0.0582 (2)	1.0863 (3)	0.0382 (9)	
H15	0.3983	0.0201	1.1255	0.046*	
C16	0.5334 (3)	0.0966 (2)	1.1166 (2)	0.0346 (8)	
H16	0.5761	0.0852	1.1763	0.042*	
C17	0.5761 (3)	0.1526 (2)	1.0571 (2)	0.0294 (8)	
C18	0.6864 (3)	0.1986 (2)	1.0812 (2)	0.0298 (8)	
C19	0.7652 (3)	0.1912 (2)	1.1642 (2)	0.0373 (9)	
H19	0.7504	0.1541	1.2105	0.045*	
C20	0.8656 (3)	0.2384 (2)	1.1787 (3)	0.0387 (9)	
H20	0.9190	0.2335	1.2348	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C21	0.8874 (3)	0.2938 (2)	1.1092 (2)	0.0369 (9)	
C22	0.8051 (3)	0.2976 (2)	1.0263 (2)	0.0350 (9)	
H22	0.8187	0.3337	0.9787	0.042*	
C23	0.2454 (3)	0.0377 (3)	0.9622 (3)	0.0474 (10)	
H23A	0.2341	-0.0107	0.9992	0.071*	
H23B	0.2414	0.0215	0.8975	0.071*	
H23C	0.1852	0.0781	0.9665	0.071*	
C24	0.9940 (3)	0.3485 (3)	1.1216 (3)	0.0508 (11)	
H24A	1.0361	0.3387	1.0709	0.076*	
H24B	1.0436	0.3356	1.1806	0.076*	
H24C	0.9706	0.4062	1.1214	0.076*	
N1	0.4700 (2)	0.24492 (18)	0.78871 (19)	0.0301 (7)	
N2	0.6678 (2)	0.16936 (18)	0.83404 (19)	0.0313 (7)	
N3	0.5147 (2)	0.16874 (18)	0.96982 (18)	0.0294 (7)	
N4	0.7072 (3)	0.25148 (17)	1.01256 (19)	0.0304 (6)	
C25	0.5843 (3)	0.3968 (2)	0.8970 (3)	0.0398 (9)	
Co1	0.58872 (4)	0.25212 (3)	0.90051 (3)	0.02805 (16)	
01	0.5219 (2)	0.34952 (16)	0.94414 (17)	0.0381 (6)	
O2	0.5824 (3)	0.47344 (18)	0.8941 (2)	0.0651 (9)	
O3	0.6496 (2)	0.34948 (15)	0.85188 (16)	0.0365 (6)	
Br1	1.09456 (5)	0.26057 (4)	0.90092 (4)	0.0860 (2)	
O4	0.7273 (5)	0.5300 (3)	0.7641 (3)	0.1209 (16)	
O5	0.9316 (14)	0.4389 (5)	0.8542 (6)	0.140 (4)	0.80 (2)
O5′	1.012 (5)	0.436 (2)	0.869 (3)	0.140 (4)	0.20 (2)
O6	0.8141 (11)	0.5262 (7)	1.0104 (8)	0.158 (5)	0.761 (18)
06'	0.745 (3)	0.560 (2)	1.046 (3)	0.158 (5)	0.239 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.039 (2)	0.031 (2)	0.033 (2)	0.0002 (17)	0.0044 (16)	0.0027 (16)
C2	0.040 (2)	0.034 (2)	0.032 (2)	-0.0010 (17)	-0.0007 (16)	0.0069 (16)
C3	0.044 (2)	0.043 (2)	0.029 (2)	-0.0060 (18)	-0.0069 (16)	0.0008 (16)
C4	0.045 (2)	0.039 (2)	0.0268 (19)	-0.0022 (18)	0.0016 (16)	-0.0030 (16)
C5	0.037 (2)	0.0279 (19)	0.0262 (18)	-0.0059 (16)	0.0075 (15)	0.0007 (14)
C6	0.037 (2)	0.0311 (19)	0.0220 (18)	-0.0066 (16)	0.0049 (14)	0.0014 (14)
C7	0.044 (2)	0.039 (2)	0.033 (2)	-0.0071 (18)	0.0070 (16)	-0.0048 (17)
C8	0.046 (2)	0.038 (2)	0.040 (2)	0.0014 (18)	0.0135 (18)	-0.0051 (17)
С9	0.035 (2)	0.035 (2)	0.042 (2)	-0.0011 (17)	0.0090 (17)	0.0055 (17)
C10	0.038 (2)	0.034 (2)	0.0287 (19)	-0.0032 (17)	0.0016 (15)	0.0057 (15)
C11	0.043 (2)	0.049 (3)	0.052 (3)	0.006 (2)	-0.0060 (19)	0.004 (2)
C12	0.041 (2)	0.055 (3)	0.064 (3)	0.004 (2)	0.009 (2)	0.003 (2)
C13	0.038 (2)	0.035 (2)	0.0273 (19)	-0.0020 (17)	0.0049 (15)	0.0004 (15)
C14	0.038 (2)	0.0292 (19)	0.037 (2)	0.0040 (16)	0.0106 (16)	-0.0027 (16)
C15	0.042 (2)	0.035 (2)	0.040 (2)	0.0020 (17)	0.0137 (18)	0.0056 (16)
C16	0.039 (2)	0.038 (2)	0.0273 (19)	0.0040 (17)	0.0057 (15)	0.0096 (15)
C17	0.036 (2)	0.0291 (19)	0.0234 (18)	0.0054 (16)	0.0057 (14)	0.0016 (14)
C18	0.036 (2)	0.031 (2)	0.0222 (17)	0.0027 (16)	0.0039 (14)	0.0000 (14)
C19	0.040 (2)	0.044 (2)	0.0263 (19)	0.0027 (18)	0.0026 (15)	0.0016 (16)

C20	0.039 (2)	0.047 (2)	0.027 (2)	0.0045 (19)	-0.0020 (16)	-0.0030 (17)
C21	0.037 (2)	0.038 (2)	0.035 (2)	0.0012 (17)	0.0043 (16)	-0.0079 (17)
C22	0.041 (2)	0.035 (2)	0.028 (2)	-0.0053 (18)	0.0032 (15)	0.0011 (15)
C23	0.040 (2)	0.046 (2)	0.057 (3)	-0.0114 (19)	0.0104 (19)	0.000 (2)
C24	0.044 (2)	0.057 (3)	0.050 (3)	-0.009 (2)	0.0020 (19)	-0.009 (2)
N1	0.0346 (16)	0.0322 (16)	0.0231 (15)	-0.0002 (14)	0.0044 (12)	0.0045 (12)
N2	0.0353 (17)	0.0325 (17)	0.0256 (15)	-0.0027 (14)	0.0035 (12)	0.0018 (12)
N3	0.0345 (17)	0.0310 (16)	0.0229 (15)	0.0016 (13)	0.0053 (12)	0.0015 (12)
N4	0.0379 (17)	0.0295 (15)	0.0233 (15)	-0.0034 (14)	0.0040 (12)	-0.0011 (12)
C25	0.051 (2)	0.034 (2)	0.033 (2)	-0.001 (2)	0.0039 (17)	0.0021 (18)
Co1	0.0354 (3)	0.0294 (3)	0.0184 (3)	-0.0015 (2)	0.00190 (18)	0.0018 (2)
01	0.0463 (16)	0.0376 (15)	0.0312 (14)	0.0005 (12)	0.0087 (11)	-0.0018 (11)
O2	0.082 (2)	0.0318 (17)	0.086 (2)	0.0046 (16)	0.0279 (19)	0.0062 (16)
O3	0.0474 (16)	0.0339 (14)	0.0289 (14)	-0.0032 (12)	0.0084 (11)	0.0051 (11)
Br1	0.0908 (5)	0.1163 (6)	0.0404 (3)	0.0077 (4)	-0.0173 (3)	-0.0045 (3)
O4	0.181 (5)	0.098 (3)	0.093 (3)	-0.033 (3)	0.049 (3)	-0.006 (3)
05	0.149 (11)	0.099 (4)	0.165 (6)	-0.033 (6)	0.005 (7)	0.029 (4)
O5′	0.149 (11)	0.099 (4)	0.165 (6)	-0.033 (6)	0.005 (7)	0.029 (4)
O6	0.118 (8)	0.152 (8)	0.184 (8)	-0.041 (7)	-0.032 (7)	0.093 (7)
O6′	0.118 (8)	0.152 (8)	0.184 (8)	-0.041 (7)	-0.032 (7)	0.093 (7)

Geometric parameters (Å, °)

C1—N1	1.328 (4)	C15—C16	1.376 (5)
C1—C2	1.383 (5)	C15—H15	0.9300
C1—H1	0.9300	C16—C17	1.388 (5)
C2—C3	1.387 (5)	C16—H16	0.9300
C2—C11	1.497 (5)	C17—N3	1.355 (4)
C3—C4	1.372 (5)	C17—C18	1.461 (5)
С3—Н3	0.9300	C18—N4	1.353 (4)
C4—C5	1.375 (5)	C18—C19	1.374 (5)
C4—H4	0.9300	C19—C20	1.371 (5)
C5—N1	1.358 (4)	C19—H19	0.9300
C5—C6	1.459 (5)	C20—C21	1.390 (5)
C6—N2	1.346 (4)	C20—H20	0.9300
C6—C7	1.374 (5)	C21—C22	1.391 (5)
C7—C8	1.386 (5)	C21—C24	1.496 (5)
С7—Н7	0.9300	C22—N4	1.337 (4)
C8—C9	1.381 (5)	C22—H22	0.9300
С8—Н8	0.9300	C23—H23A	0.9600
C9—C10	1.382 (5)	C23—H23B	0.9600
C9—C12	1.495 (5)	C23—H23C	0.9600
C10—N2	1.341 (4)	C24—H24A	0.9600
C10—H10	0.9300	C24—H24B	0.9600
C11—H11A	0.9600	C24—H24C	0.9600
C11—H11B	0.9600	N1—Co1	1.927 (3)
C11—H11C	0.9600	N2—Co1	1.951 (3)
C12—H12A	0.9600	N3—Co1	1.950 (3)
C12—H12B	0.9600	N4—Co1	1.925 (3)
C12—H12C	0.9600	C25—O2	1.225 (5)

C13—N3	1.337 (4)	C25—O1	1.312 (4)
C13—C14	1.391 (5)	$C_{25} = 0_{3}$	1.318 (4)
С13—Н13	0.9300	C25—C01	2.309 (4)
C14—C15	1.374 (5)	Co1O3	1.891 (2)
C14—C23	1 496 (5)	Col=Ol	1.892 (2)
011 025	1.150 (5)		1.092 (2)
N1—C1—C2	123.0 (3)	C19—C20—C21	119.8 (3)
N1—C1—H1	118.5	С19—С20—Н20	120.1
C2—C1—H1	118.5	C21—C20—H20	120.1
C1—C2—C3	117.3 (3)	C20—C21—C22	117.4 (3)
C1—C2—C11	120.8 (4)	C20—C21—C24	122.3 (3)
C3—C2—C11	121.9 (3)	C22—C21—C24	120.2 (4)
C4—C3—C2	119.8 (3)	N4—C22—C21	122.6 (3)
С4—С3—Н3	120.1	N4—C22—H22	118.7
С2—С3—Н3	120.1	C21—C22—H22	118.7
C3—C4—C5	120.2 (4)	C14—C23—H23A	109.5
C3—C4—H4	119.9	C14—C23—H23B	109.5
C5—C4—H4	119.9	H23A—C23—H23B	109.5
N1—C5—C4	120.0 (3)	C14—C23—H23C	109.5
N1—C5—C6	114.0 (3)	H23A—C23—H23C	109.5
C4—C5—C6	125.9 (3)	H23B—C23—H23C	109.5
N2—C6—C7	121.1 (3)	C21—C24—H24A	109.5
N2—C6—C5	114.4 (3)	C21—C24—H24B	109.5
C7—C6—C5	124.5 (3)	H24A—C24—H24B	109.5
C6-C7-C8	119.5 (3)	C21—C24—H24C	109.5
C6—C7—H7	120.3	H24A—C24—H24C	109.5
C8—C7—H7	120.3	H_24B — C_24 — H_24C	109.5
C9 - C8 - C7	119.8 (4)	C1-N1-C5	1197(3)
C9—C8—H8	120.1	C1-N1-Co1	125.8(2)
C7-C8-H8	120.1	C_{5} N1— C_{01}	1145(2)
C_{8} C_{9} C_{10}	117 5 (3)	$C10 - N^2 - C6$	1100(2)
C_{8} C_{9} C_{12}	122 8 (4)	C10 - N2 - Co1	119.0(3) 1269(2)
C10-C9-C12	122.0(1) 119.7(4)	C6-N2-Co1	120.9(2) 1140(2)
$N_2 - C_{10} - C_9$	112.7(4) 123.0(3)	C13 N3 C17	119.0(2)
$N_2 = C_{10} = C_2$	118.5	$C_{13} = N_3 = C_{17}$	117.7(3)
$C_{2} = C_{10} = H_{10}$	118.5	C17 = N3 = Co1	127.1(2) 1134(2)
$C_2 = C_{11} = H_{11A}$	100.5	$C_{1}^{2} = N_{1}^{2} = C_{1}^{2}$	113.4(2) 110.4(3)
$C_2 = C_{11} = H_{11}R$	109.5	$C_{22} = N_4 = C_{10}$	119.4(3) 125.6(2)
	109.5	C_{22} N4 C_{21}	125.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{10} = 104 = C_{01}$	113.0(2) 125.7(4)
	109.5	02 - 025 - 01	123.7(4) 124.2(4)
	109.5	02 - 025 - 03	124.3(4)
	109.5	01 - 025 - 03	110.0(3) 170.2(2)
C_{9} C_{12} H_{12} H_{12}	109.5	02 - 025 - 001	1/9.2(3)
$U_{2} = U_{12} = \Pi_{12} B$	109.3	01 - 023 - 001	54.07 (17)
H12A - U12 - H12B	109.5	03 - 023 - 01	34.9/(1/)
U9-U12-H12U	109.5	03 - 01 - 01	09.44 (11)
H12A - C12 - H12C	109.5	03 - 01 - N4	95.28 (11)
H12B - C12 - H12C	109.5	U1 - U01 - N4	89.95 (11)
N3-C13-C14	122.8 (3)	U3—Col—NI	89.86 (11)

N3—C13—H13	118.6	01—Co1—N1	93.03 (11)
C14—C13—H13	118.6	N4—Co1—N1	176.27 (12)
C15—C14—C13	117.4 (3)	03—Co1—N3	167.52 (11)
C15—C14—C23	123.5 (3)	01—Co1—N3	98.53 (12)
C_{13} C_{14} C_{23}	119.1 (3)	N4—Co1—N3	83.14 (12)
C14-C15-C16	120.8 (3)	N1—Co1—N3	94 19 (12)
C14—C15—H15	119.6	O_3 — C_01 — N_2	97.86 (12)
C16—C15—H15	119.6	01-Co1-N2	166 77 (11)
C_{15} C_{16} C_{17}	119.1 (3)	N4-Co1-N2	94 61 (12)
$C_{15} - C_{16} - H_{16}$	120.4	N1 - Co1 - N2	82.98 (12)
C17—C16—H16	120.1	$N_3 - C_0 - N_2$	94 34 (12)
N_{3} $-C_{17}$ $-C_{16}$	120.1	03-Co1-C25	34.81 (12)
N3_C17_C18	120.0(3) 114.8(3)	$01 - C_{01} - C_{25}$	34.61(12) 34.63(12)
C_{16} C_{17} C_{18}	124.6 (3)	N4-Co1-C25	91 91 (13)
$N_{1} = C_{1}^{10} = C_{1}^{10}$	124.0(3) 120.8(3)	N1 Co1 C25	91.91(13) 91.82(12)
N4 C18 C17	120.0(3) 113.6(3)	$N_{1} = Co_{1} = C_{2}$	91.82(12)
14-18-17	115.0(3) 125.6(2)	$N_{2} = C_{21} = C_{25}$	133.06(13) 122.58(12)
$C_{19} = C_{18} = C_{17}$	123.0(3) 120.1(4)	$N_2 = C_0 = C_{23}$	152.38(15)
$C_{20} = C_{19} = C_{18}$	120.1 (4)	$C_{23} = 01 = C_{01}$	90.3 (2)
C18 C19 H19	120.0	03-001	90.2 (2)
C18—C19—H19	120.0		
N1 C1 C2 C3	0.1.(6)	C_{22} N4 C_{21} N2	170.6(2)
N1 = C1 = C2 = C3	0.1(0)	C_{22} N_4 C_{21} N_2	1/9.0(3)
NI = CI = C2 = CII	-1/8.4(3)	$C_{10} = N4 = C_{01} = N2$	0.0(2)
C1 = C2 = C3 = C4	0.8(0) 170.2(4)	C_{22} N4 C_{21} N2	85.7(3)
C11 - C2 - C3 - C4	1/9.5 (4)	C18 - N4 - C01 - N2	-93.9 (3)
$C_2 = C_3 = C_4 = C_5$	-1.1(6)	C_{22} N4 C_{11} C_{25}	-4/.3(3)
$C_3 = C_4 = C_5 = N_1$	0.5 (5)	C18 - N4 - C01 - C25	133.2 (3)
$C_3 - C_4 - C_5 - C_6$	-1/8.4(3)	CI = NI = CoI = O3	-80.4(3)
N1 - C5 - C6 - N2	-1.9 (4)	C_{3} C_{1} C_{0} C_{1} C_{0}	97.7(2)
C4—C5—C6—N2	177.0 (3)	CI-NI-CoI-OI	-11.0 (3)
NIC5C6C7	1/9.3 (3)	C5—NI—Col—Ol	167.1 (2)
C4—C5—C6—C7	-1.8 (6)	CI—NI—CoI—N3	87.8 (3)
N2-C6-C7-C8	-1.5 (5)	C5—N1—Co1—N3	-94.2 (2)
C5—C6—C7—C8	177.2 (3)	C1—N1—Co1—N2	-178.3 (3)
C6—C7—C8—C9	-0.8 (6)	C5—N1—Co1—N2	-0.3(2)
C7—C8—C9—C10	1.4 (5)	C1—N1—Co1—C25	-45.6 (3)
C7—C8—C9—C12	-177.3 (4)	C5—N1—Co1—C25	132.4 (2)
C8—C9—C10—N2	0.1 (5)	C13—N3—Co1—O3	103.1 (5)
C12—C9—C10—N2	178.9 (3)	C17—N3—Co1—O3	-73.0 (6)
N3—C13—C14—C15	-0.1 (5)	C13—N3—Co1—O1	88.1 (3)
N3—C13—C14—C23	179.2 (3)	C17—N3—Co1—O1	-88.0 (2)
C13—C14—C15—C16	1.1 (5)	C13—N3—Co1—N4	177.0 (3)
C23—C14—C15—C16	-178.3 (4)	C17—N3—Co1—N4	0.9 (2)
C14—C15—C16—C17	-0.7 (5)	C13—N3—Co1—N1	-5.6 (3)
C15—C16—C17—N3	-0.6 (5)	C17—N3—Co1—N1	178.3 (2)
C15—C16—C17—C18	178.9 (3)	C13—N3—Co1—N2	-88.8 (3)
N3-C17-C18-N4	1.6 (4)	C17—N3—Co1—N2	95.1 (2)
C16—C17—C18—N4	-178.0 (3)	C13—N3—Co1—C25	90.9 (3)
N3-C17-C18-C19	-178.2 (3)	C17—N3—Co1—C25	-85.3 (3)

C16—C17—C18—C19	2.3 (6)	C10-N2-Co1-O3	87.5 (3)
N4-C18-C19-C20	0.7 (5)	C6—N2—Co1—O3	-89.7 (2)
C17—C18—C19—C20	-179.5 (3)	C10-N2-Co1-O1	103.4 (5)
C18—C19—C20—C21	0.0 (6)	C6—N2—Co1—O1	-73.9 (6)
C19—C20—C21—C22	-0.8 (5)	C10—N2—Co1—N4	-6.4 (3)
C19—C20—C21—C24	178.5 (4)	C6—N2—Co1—N4	176.3 (2)
C20-C21-C22-N4	0.9 (6)	C10—N2—Co1—N1	176.4 (3)
C24—C21—C22—N4	-178.5 (3)	C6—N2—Co1—N1	-0.8 (2)
C2-C1-N1-C5	-0.7 (5)	C10-N2-Co1-N3	-89.9 (3)
C2-C1-N1-Co1	177.2 (3)	C6—N2—Co1—N3	92.9 (2)
C4—C5—N1—C1	0.5 (5)	C10-N2-Co1-C25	90.4 (3)
C6—C5—N1—C1	179.4 (3)	C6—N2—Co1—C25	-86.8 (3)
C4—C5—N1—Co1	-177.7 (3)	O1—C25—Co1—O3	179.8 (3)
C6C5N1Co1	1.3 (4)	O3—C25—Co1—O1	-179.8 (3)
C9—C10—N2—C6	-2.4 (5)	O1—C25—Co1—N4	-87.1 (2)
C9-C10-N2-Co1	-179.5 (3)	O3—C25—Co1—N4	93.0 (2)
C7—C6—N2—C10	3.0 (5)	O1—C25—Co1—N1	92.7 (2)
C5-C6-N2-C10	-175.8 (3)	O3—C25—Co1—N1	-87.1 (2)
C7—C6—N2—Co1	-179.5 (3)	O1—C25—Co1—N3	-4.8 (3)
C5-C6-N2-Co1	1.7 (4)	O3—C25—Co1—N3	175.40 (17)
C14—C13—N3—C17	-1.2 (5)	O1—C25—Co1—N2	174.82 (18)
C14—C13—N3—Co1	-177.1 (3)	O3—C25—Co1—N2	-5.0 (3)
C16—C17—N3—C13	1.5 (5)	O2-C25-O1-Co1	179.6 (4)
C18—C17—N3—C13	-178.0 (3)	O3—C25—O1—Co1	0.1 (3)
C16-C17-N3-Co1	178.0 (3)	O3—Co1—O1—C25	-0.1 (2)
C18—C17—N3—Co1	-1.6 (4)	N4—Co1—O1—C25	93.4 (2)
C21—C22—N4—C18	-0.2 (5)	N1—Co1—O1—C25	-88.8 (2)
C21—C22—N4—Co1	-179.7 (3)	N3—Co1—O1—C25	176.5 (2)
C19—C18—N4—C22	-0.7 (5)	N2—Co1—O1—C25	-16.9 (6)
C17—C18—N4—C22	179.6 (3)	O2-C25-O3-Co1	-179.6 (4)
C19-C18-N4-Co1	178.9 (3)	O1—C25—O3—Co1	-0.1 (3)
C17-C18-N4-Co1	-0.8 (4)	O1—Co1—O3—C25	0.1 (2)
C22—N4—Co1—O3	-12.4 (3)	N4—Co1—O3—C25	-88.6 (2)
C18—N4—Co1—O3	168.0 (2)	N1—Co1—O3—C25	93.4 (2)
C22—N4—Co1—O1	-81.8 (3)	N3—Co1—O3—C25	-15.7 (6)
C18—N4—Co1—O1	98.6 (2)	N2—Co1—O3—C25	176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С1—Н1…О1	0.93	2.43	2.931 (5)	114
C3— $H3$ ···Br1 ⁱ	0.93	2.80	3.718 (4)	168
C4—H4····O1 ⁱⁱ	0.93	2.51	3.257 (4)	138
C10—H10…N4	0.93	2.53	3.036 (4)	114
C11—H11A····Br1 ⁱⁱⁱ	0.96	2.91	3.810 (4)	157
C13—H13…N1	0.93	2.52	3.023 (4)	114
C19—H19…O3 ^{iv}	0.93	2.52	3.284 (4)	140
C20—H20···Br1 ^{iv}	0.93	2.85	3.778 (4)	172
С22—Н22…О3	0.93	2.44	2.939 (4)	113

supplementary materials

C23—H23 <i>B</i> ····O4 ^v	0.96	2.42	3.330 (6)	158	
C24—H24A…Br1	0.96	2.93	3.836 (5)	158	

Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) x, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) x, -y+1/2, z+1/2; (v) -x+1, y-1/2, -z+3/2.